If $\cot \theta=\frac{1}{\sqrt{3}}$, find the value of $\frac{1-\cos ^{2} \theta}{2-\sin ^{2} \theta}$.
Given: $\cot \theta=\frac{1}{\sqrt{3}}$
We have to find the value of the expression $\frac{1-\cos ^{2} \theta}{2-\sin ^{2} \theta}$
We know that,
$1+\cot ^{2} \theta=\operatorname{cosec}^{2} \theta$
$\Rightarrow \operatorname{cosec}^{2} \theta=1+\left(\frac{1}{\sqrt{3}}\right)^{2}$
$\Rightarrow \operatorname{cosec}^{2} \theta=\frac{4}{3}$
Using the identity $\sin ^{2} \theta+\cos ^{2} \theta=1$, we have
$\frac{1-\cos ^{2} \theta}{2-\sin ^{2} \theta}=\frac{\sin ^{2} \theta}{2-\sin ^{2} \theta}$
$=\frac{\frac{1}{\operatorname{cosec}^{2} \theta}}{2-\frac{1}{\operatorname{cosec}^{2} \theta}}$
$=\frac{1}{2 \operatorname{cosec}^{2} \theta-1}$
$=\frac{1}{2 \times \frac{4}{3}-1}$
$=\frac{3}{5}$
Hence, the value of the given expression is $\frac{3}{5}$.