Question:
If cot (α + β) = 0, then write the value of sin (α + 2β).
Solution:
$\cot (\alpha+\beta)=0$
$\Rightarrow \alpha+\beta=\frac{\pi}{2}$ (1)
$\beta=\frac{\pi}{2}-\alpha$ (2)
$\alpha=\frac{\pi}{2}-\beta$ (3)
Now, $\sin (\alpha+2 \beta)=\sin (\alpha+\beta+\beta)$
$=\sin \left(\frac{\pi}{2}+\frac{\pi}{2}-\alpha\right)$
$=\sin (\pi-\alpha)$
$=\sin \alpha$
Now, $\sin (\alpha+2 \beta)=\sin (\alpha+2 \beta)$
$=\sin \left(\frac{\pi}{2}-\beta+2 \beta\right)$
$=\sin \left(\frac{\pi}{2}+\beta\right)$
$=\cos \beta$