If $\operatorname{cosec} x-\cot x=\frac{1}{2}, 0 (a) $\frac{5}{3}$ (b) $\frac{3}{5}$ (c) $-\frac{3}{5}$ (d) $-\frac{5}{3}$
(b) $\frac{3}{5}$
We have:
$\operatorname{cosec} x-\cot x=\frac{1}{2}$ ...(i)
$\Rightarrow \frac{1}{\operatorname{cosec} x-\cot x}=2$
$\Rightarrow \frac{\operatorname{cosec}^{2} x-\cot ^{2} x}{\operatorname{cosec} x-\cot x}=2$
$\Rightarrow \frac{(\operatorname{cosec} x+\cot x)(\operatorname{cosec} x-\cot x)}{(\operatorname{cosec} x-\cot x)}=2$
$\therefore \operatorname{cosec} x+\cot x=2$ ...(ii)
Adding (1) and (2):
$2 \operatorname{cosec} x=\frac{1}{2}+2$
$\Rightarrow 2 \operatorname{cosec} x=\frac{5}{2}$
$\Rightarrow \operatorname{cosec} x=\frac{5}{4}$
$\Rightarrow \frac{1}{\sin x}=\frac{5}{4}$
$\Rightarrow \sin x=\frac{4}{5}$
Now, $0<\theta<\frac{\pi}{2}$
$\therefore \cos \theta=\sqrt{1-\sin ^{2} \theta}$
$=\sqrt{1-\left(\frac{4}{5}\right)^{2}}$
$=\frac{3}{5}$