If cosec (A + B) = 1 and cosec(A – B) = 2, 0° < (A + B) ≤ 90° and A > B then find the values of :
(i) sin A cos B + cos A sin B
(ii) $\frac{\tan A-\tan B}{1+\tan A \tan B}$
As we know that,
$\operatorname{cosec} 90^{\circ}=1$
Thus,
if $\operatorname{cosec}(A+B)=1$
$\Rightarrow A+B=90^{\circ} \quad \ldots(1)$
and $\operatorname{cosec} 30^{\circ}=2$
Thus,
if $\operatorname{cosec}(A-B)=2$
$\Rightarrow A-B=30^{\circ} \quad \ldots(2)$
Solving $(1)$ and $(2)$, we get
$A=60^{\circ}$ and $B=30^{\circ} \quad \ldots(3)$
$(\mathrm{i}) \sin 60^{\circ}=\frac{\sqrt{3}}{2}$
$\cos 30^{\circ}=\frac{\sqrt{3}}{2}$
$\cos 60^{\circ}=\frac{1}{2}$
$\sin 30^{\circ}=\frac{1}{2}$
On substituting these values, we get
$\sin A \cos B+\cos A \sin B=\sin 60^{\circ} \cos 30^{\circ}+\cos 60^{\circ} \sin 30^{\circ}$
$=\frac{\sqrt{3}}{2} \times \frac{\sqrt{3}}{2}+\frac{1}{2} \times \frac{1}{2}$
$=\frac{3}{4}+\frac{1}{4}$
$=\frac{4}{4}$
$=1$
Hence, $\sin A \cos B+\cos A \sin B=1$.
$(\mathrm{ii}) \tan 60^{\circ}=\sqrt{3}$
$\tan 30^{\circ}=\frac{1}{\sqrt{3}}$
On substituting these values, we get
$\frac{\tan A-\tan B}{1+\tan A \tan B}=\frac{\tan 60^{\circ}-\tan 30^{\circ}}{1+\tan 60^{\circ} \tan 30^{\circ}}$
$=\frac{\sqrt{3}-\frac{1}{\sqrt{3}}}{1+\sqrt{3}\left(\frac{1}{\sqrt{3}}\right)}$
$=\frac{\frac{3-1}{\sqrt{3}}}{1+1}$
$=\frac{2}{2 \sqrt{3}}$
$=\frac{1}{\sqrt{3}}$
Hence, $\frac{\tan A-\tan B}{1+\tan A \tan B}=\frac{1}{\sqrt{3}} .$