If $\operatorname{cosec} A=\sqrt{2}$, find the value of $\frac{2 \sin ^{2} A+3 \cot ^{2} A}{4\left(\tan ^{2} A-\cos ^{2} A\right)}$.
Given: $\operatorname{cosec} A=\sqrt{2}$
We have to find the value of the expression $\frac{2 \sin ^{2} A+3 \cot ^{2} A}{4\left(\tan ^{2} A-\cos ^{2} A\right)}$
We know that,
$\operatorname{cosec} A=\sqrt{2}$
$\Rightarrow \sin A=\frac{1}{\operatorname{cosec} A}=\frac{1}{\sqrt{2}}$
$\cos A=\sqrt{1-\sin ^{2} A}=\sqrt{1-\left(\frac{1}{\sqrt{2}}\right)^{2}}=\frac{1}{\sqrt{2}}$
$\tan A=\frac{\sin A}{\cos A}=\frac{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}}=1$
$\cot A=\frac{1}{\tan A}=\frac{1}{1}=1$
Therefore,
$\frac{2 \sin ^{2} A+3 \cot ^{2} A}{4\left(\tan ^{2} A-\cos ^{2} A\right)}=\frac{2 \times\left(\frac{1}{\sqrt{2}}\right)^{2}+3 \times 1^{2}}{4\left(1^{2}-\left(\frac{1}{\sqrt{2}}\right)^{2}\right)}$
$=2$
Hence, the value of the given expression is 2.