If $\operatorname{cosec} A=2$, find the value of $\frac{1}{\tan A}+\frac{\sin A}{1+\cos A}$.
Given:
$\operatorname{cosec} A=2 \ldots \ldots$ (1)
To find:
$\frac{1}{\tan A}+\frac{\sin A}{1+\cos A}$
Now we know $\operatorname{cosec} A$ is defined as below
$\operatorname{cosec} A=\frac{1}{\sin A}$
Therefore,
$\sin A=\frac{1}{\operatorname{cosec} A}$
Now by substituting the value of $\operatorname{cosec} A$ from equation (1)
We get,
$\sin A=\frac{1}{2}$
Now by substituting the value of $\sin A$ in the following identity of trigonometry
$\sin ^{2} A+\cos ^{2} A=1$
We get,
$\cos ^{2} A=1-\sin ^{2} A$
$=1-\left(\frac{1}{2}\right)^{2}$
$=1-\frac{1}{4}$
Now by taking L.C.M we get
$\cos ^{2} A=\frac{4-1}{4}$
$=\frac{3}{4}$
Now by taking square root on both sides
We get,
$\cos A=\sqrt{\frac{3}{4}}$
$=\frac{\sqrt{3}}{\sqrt{4}}$
$=\frac{\sqrt{3}}{2}$
Therefore,
$\cos A=\frac{\sqrt{3}}{2}$....(3)
Now $\tan A$ is defined as follows
$\tan A=\frac{\sin A}{\cos A}$
Now by substituting the value of $\sin A$ and $\cos A$ from equation $(2)$ and $(3)$ respectively we get,
$\tan A=\frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}}$
$=\frac{1}{2} \times \frac{2}{\sqrt{3}}$
$=\frac{1}{\sqrt{3}}$
Therefore,
$\tan A=\frac{1}{\sqrt{3}}$....(4)
Now by substituting the value of $\sin A, \cos A$ and $\tan A$ from equation ( 2$),(3)$ and (4) respectively we get,
$\frac{1}{\tan A}+\frac{\sin A}{1+\cos A}=\frac{1}{\frac{1}{\sqrt{3}}}+\frac{\frac{1}{2}}{1+\frac{\sqrt{3}}{2}}$
$=\frac{\sqrt{3}}{1}+\frac{1}{2\left(1+\frac{\sqrt{3}}{2}\right)}$
Now by taking L.C.M we get
$\frac{1}{\tan A}+\frac{\sin A}{1+\cos A}=\frac{\sqrt{3}}{1}+\frac{1}{2\left(\frac{2+\sqrt{3}}{2}\right)}$
Now 2 gets cancelled and we get
$\frac{1}{\tan A}+\frac{\sin A}{1+\cos A}=\frac{\sqrt{3}}{1}+\frac{1}{(2+\sqrt{3})}$
Now by taking L.C.M, we get,
$\frac{1}{\tan A}+\frac{\sin A}{1+\cos A}=\frac{\sqrt{3} \times(2+\sqrt{3})}{1 \times(2+\sqrt{3})}+\frac{1}{(2+\sqrt{3})}$
$=\frac{\sqrt{3} \times(2+\sqrt{3})+1}{(2+\sqrt{3})}$
Now by opening the brackets in the numerator
We get,
$\frac{1}{\tan A}+\frac{\sin A}{1+\cos A}=\frac{2 \sqrt{3}+\sqrt{3} \sqrt{3}+1}{(2+\sqrt{3})}$
Since $\sqrt{3} \sqrt{3}=3$
Therefore,
$\frac{1}{\tan A}+\frac{\sin A}{1+\cos A}=\frac{2 \sqrt{3}+3+1}{(2+\sqrt{3})}$
$=\frac{2 \sqrt{3}+4}{(2+\sqrt{3})}$
Now by taking 2 common
We get,
$\frac{1}{\tan A}+\frac{\sin A}{1+\cos A}=\frac{2(\sqrt{3}+2)}{(2+\sqrt{3})}$
$=\frac{2(2+\sqrt{3})}{(2+\sqrt{3})}$
Now as $(2+\sqrt{3})$ is present in both numerator as well as denominator, it gets cancelled
Therefore,
$\frac{1}{\tan A}+\frac{\sin A}{1+\cos A}=2$