If (cos α + cos β)

Question:

If $(\cos \alpha+\cos \beta)^{2}+(\sin \alpha+\sin \beta)^{2}=\lambda \cos ^{2}\left(\frac{\alpha-\beta}{2}\right)$, write the value of $\lambda$

 

Solution:

$(\cos \alpha+\cos \beta)^{2}+(\sin \alpha+\sin \beta)^{2}=\lambda \cos ^{2}\left(\frac{\alpha-\beta}{2}\right)$

Consider LHS:

(cos α + cos β)2 + (sin α + sin β)2

$=\left[2 \cos \left(\frac{\alpha+\beta}{2}\right) \cos \left(\frac{\alpha-\beta}{2}\right)\right]^{2}+\left[2 \sin \left(\frac{\alpha+\beta}{2}\right) \cos \left(\frac{\alpha-\beta}{2}\right)\right]^{2}$

$=4 \cos ^{2}\left(\frac{\alpha+\beta}{2}\right) \cos ^{2}\left(\frac{\alpha-\beta}{2}\right)+4 \sin ^{2}\left(\frac{\alpha+\beta}{2}\right) \cos ^{2}\left(\frac{\alpha-\beta}{2}\right)$

$=4 \cos ^{2}\left(\frac{\alpha-\beta}{2}\right)\left[\cos ^{2}\left(\frac{\alpha+\beta}{2}\right)+\sin ^{2}\left(\frac{\alpha+\beta}{2}\right)\right]$

$=4 \cos ^{2}\left(\frac{\alpha-\beta}{2}\right)$

= RHS

Leave a comment