If $\cos \alpha+\cos \beta=0=\sin \alpha+\sin \beta$, then prove that $\cos 2 \alpha+\cos 2 \beta=-2 \cos (\alpha+\beta)$ [NCERT EXEMPLAR]
Given: $\cos \alpha+\cos \beta=0=\sin \alpha+\sin \beta$
$\therefore \cos \alpha+\cos \beta=0$
Squaring on both sides, we get
$\cos ^{2} \alpha+\cos ^{2} \beta+2 \cos \alpha \cos \beta=0$ ....(1)
Also,
$\sin \alpha+\sin \beta=0$
Squaring on both sides, we get
$\sin ^{2} \alpha+\sin ^{2} \beta+2 \sin \alpha \sin \beta=0$ ...(2)
Subtracting (2) from (1), we get
$\left(\cos ^{2} \alpha+\cos ^{2} \beta+2 \cos \alpha \cos \beta\right)-\left(\sin ^{2} \alpha+\sin ^{2} \beta+2 \sin \alpha \sin \beta\right)=0$
$\Rightarrow \cos ^{2} \alpha-\sin ^{2} \alpha+\cos ^{2} \beta-\sin ^{2} \beta+2(\cos \alpha \cos \beta-\sin \alpha \sin \beta)=0$
$\Rightarrow \cos 2 \alpha+\cos 2 \beta+2 \cos (\alpha+\beta)=0$
$\Rightarrow \cos 2 \alpha+\cos 2 \beta=-2 \cos (\alpha+\beta)$