If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), prove that tan A tan B tan C + tan D = 0.
cos (A + B) sin (C − D) = cos (A − B) sin (C + D)
$\Rightarrow[\cos A \cos B-\sin A \sin B][\sin C \cos D-\cos C \sin D]=[\cos A \cos B+\sin A \sin B][\sin C \cos D+\cos C \sin D]$
Dividing both sides by $\cos A \cos B \cos C \cos D$,
$\frac{[\cos A \cos B-\sin A \sin B][\sin C \cos D-\cos C \sin D]}{\cos A \cos B \cos C \cos D}=\frac{[\cos A \cos B+\sin A \sin B][\sin C \cos D+\cos C \sin D]}{\cos A \cos B \cos C \cos D}$
$\Rightarrow \frac{[\cos A \cos B-\sin A \sin B]}{\cos A \cos B} \times \frac{[\sin C \cos D-\cos C \sin D]}{\cos C \cos D}=\frac{[\cos A \cos B+\sin A \sin B]}{\cos A \cos B} \times \frac{[\sin C \cos D+\cos C \sin D]}{\cos C \cos D}$\
$\Rightarrow \tan C-\tan D-\tan A \tan B \tan C+\tan A \tan B \tan D=\tan C+\tan D+\tan A \tan B \tan C+\tan A$ $\tan B \tan D$
$\Rightarrow-\tan D-\tan D=\tan A \tan B \tan C+\tan A \tan B \tan C$
$\Rightarrow-2 \tan D=2 \tan A \tan B \tan C$
$\Rightarrow \tan A \tan B \tan C=-\tan D$
$\Rightarrow \tan A \tan B \tan C+\tan D=0$
Hence proved.