Question:
If $\cos \theta=\frac{4}{5}$, find all other trigonometric ratios of angle $\theta$.
Solution:
Given: $\cos \theta=\frac{4}{5}$
Now, we have to find all the other trigonometric ratios.
We have the following right angle triangle.
From the above figure,
Perpendicular $=\sqrt{\text { Hypotenuse }^{2}-\text { Base }^{2}}$
$\Rightarrow A B=\sqrt{A C^{2}-B C^{2}}$
$\Rightarrow A B=\sqrt{5^{2}-4^{2}}$
$\Rightarrow A B=3$
Therefore,
$\sin \theta=\frac{A B}{A C}=\frac{3}{5}$
$\operatorname{cosec} \theta=\frac{A C}{A B}=\frac{5}{3}$
$\sec \theta=\frac{A C}{B C}=\frac{5}{4}$
$\tan \theta=\frac{A B}{B C}=\frac{3}{4}$
$\cot \theta=\frac{B C}{A B}=\frac{4}{3}$