Question:
If $\cos \theta=\frac{3}{4}$, then find the value of $9 \tan ^{2} \theta+9$
Solution:
Given:
$\cos \theta=\frac{3}{4}$
$\Rightarrow \frac{1}{\cos \theta}=\frac{4}{3}$
$\Rightarrow \sec \theta=\frac{4}{3}$
We know that,
$\sec ^{2} \theta-\tan ^{2} \theta=1$
$\Rightarrow\left(\frac{4}{3}\right)^{2}-\tan ^{2} \theta=1$
$\Rightarrow \tan ^{2} \theta=\frac{16}{9}-1$
$\Rightarrow \tan ^{2} \theta=\frac{7}{9}$
Therefore,
$9 \tan ^{2} \theta+9=9 \times \frac{7}{9}+9$
$=7+9$
$=16$