If cos 2θ = sin 4θ, where 2θ and 4θ are acute angles

Question:

If $\cos 2 \theta=\sin 4 \theta$, where $2 \theta$ and $4 \theta$ are acute angles, find the value of $\theta$.

Solution:

We have: $\cos 2 \theta=\sin 4 \theta$

Given in question $2 \theta$ and $4 \theta$ are acute angles. We have to find $\theta$

Now we have

$\cos 2 \theta=\sin 4 \theta$

$\Rightarrow \sin \left(90^{\circ}-2 \theta\right)=\sin 4 \theta$

$\Rightarrow 90^{\circ}-2 \theta=4 \theta$

$\Rightarrow 6 \theta=90^{\circ}$

Therefore $\theta=15^{\circ}$

Leave a comment