Question:
If cos (α + β) = 0 then sin (α – β) = ?
(a) sin 2α
(b) cos 2β
(c) sin α
(d) cos β
Solution:
Given: cos(α + β) = 0
As we know that,
$\cos 90^{\circ}=0$
Since, $\cos (\alpha+\beta)=0$
$\Rightarrow \alpha+\beta=90^{\circ}$
$\Rightarrow \alpha=90^{\circ}-\beta \quad \ldots(1)$
Now,
$\sin (\alpha-\beta)=\sin \left(90^{\circ}-\beta-\beta\right)$
$=\sin \left(90^{\circ}-2 \beta\right)$
$=\cos 2 \beta \quad\left(\because \sin \left(90^{\circ}-\theta\right)=\cos \theta\right)$
Hence, the correct option is (b).