Question.
If both $(x-2)$ and $\left(x-\frac{1}{2}\right)$ are factors of $p x^{2}+5 x+r$, prove that $p=r$.
If both $(x-2)$ and $\left(x-\frac{1}{2}\right)$ are factors of $p x^{2}+5 x+r$, prove that $p=r$.
Solution:
Let $f(x)=p x^{2}+5 x+r$
It is given that $(x-2)$ is a factor of $f(x)$.
Using factor theorem, we have
$f(2)=0$
$\Rightarrow p \times\left(\frac{1}{2}\right)^{2}+5 \times \frac{1}{2}+r=0$
$\Rightarrow \frac{p}{4}+r=-\frac{5}{2}$
$\Rightarrow p+4 r=-10 \quad \ldots \ldots(2)$
From (1) and (2), we have
$4 p+r=p+4 r$
$\Rightarrow 4 p-p=4 r-r$
$\Rightarrow 3 p=3 r$
$\Rightarrow p=r$
Let $f(x)=p x^{2}+5 x+r$
It is given that $(x-2)$ is a factor of $f(x)$.
Using factor theorem, we have
$f(2)=0$
$\Rightarrow p \times\left(\frac{1}{2}\right)^{2}+5 \times \frac{1}{2}+r=0$
$\Rightarrow \frac{p}{4}+r=-\frac{5}{2}$
$\Rightarrow p+4 r=-10 \quad \ldots \ldots(2)$
From (1) and (2), we have
$4 p+r=p+4 r$
$\Rightarrow 4 p-p=4 r-r$
$\Rightarrow 3 p=3 r$
$\Rightarrow p=r$