If area of a circle inscribed in an equilateral triangle is 48π square units, then perimeter of the triangle is
(a) $17 \sqrt{3}$ units
(b) 36 units
(c) 72 units
(d) $48 \sqrt{3}$ units
Let the circle of radius r be inscribed in an equilateral triangle of side a.
Area of the circle is given as 48π.
$\Rightarrow \pi r^{2}=48 \pi$
$\Rightarrow r^{2}=48$
$\Rightarrow r=4 \sqrt{3}$
Now, it is clear that ON⊥BC. So, ON is the height of ΔOBC corresponding to BC.
Area of ΔABC = Area of ΔOBC + Area of ΔOCA + Area of ΔOAB = 3 × Area of ΔOBC
$\frac{\sqrt{3}}{4} \times a^{2}=3 \times \frac{1}{2} \times \mathrm{BC} \times \mathrm{ON}$
$\frac{\sqrt{3}}{4} \times a^{2}=3 \times \frac{1}{2} \times a \times r$
$\frac{\sqrt{3}}{4} \times a^{2}=3 \times \frac{1}{2} \times a \times 4 \sqrt{3}$
$a=24$
Thus, perimeter of the equilateral triangle = 3 × 24 units = 72 units
So the answer is (c).