Question:
If $\alpha, \beta$ are the zeros of the polynomial $f(x)=x^{2}-5 x+k$ such that $\alpha-\beta=1$, find the value of $k$.
Solution:
Given: $f(x)=x^{2}-5 x+k$
The co-efficients are $a=1, b=-5$ and $c=k$.
$\therefore \alpha+\beta=\frac{-b}{a}$
$=>\alpha+\beta=-\frac{(-5)}{1}$
$=>\alpha+\beta=5 \quad \ldots(1)$
Also, $\alpha-\beta=1 \quad \ldots(2)$
From (1) & (2), we get:
$2 \alpha=6$
$=>\alpha=3$
Pu tting the value of $\alpha$ in $(1)$, we get $\beta=2$.
Now, $\alpha \beta=\frac{c}{a}$
$=>3 \times 2=\frac{k}{1}$
$\therefore k=6$