If angles of a triangle are in A.P. and $b: c=\sqrt{3}: \sqrt{2}$, then $C=$ ________________
If angle of a triangle ABC are in A.P
$\Rightarrow 2 \angle B=\angle A+\angle C$
and $\frac{b}{c}=\frac{\sqrt{3}}{\sqrt{2}}$
By angle sum property
$\angle A+\angle B+\angle C=\pi$
$\Rightarrow 2 \angle B+\angle B=\pi$
$\Rightarrow \angle B=\frac{\pi}{3}$
also,
Using Sine formula
$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
i. e $\frac{b}{\sin B}=\frac{c}{\sin C}$
i. e $\frac{b}{c}=\frac{\sin B}{\sin C}$
i.e $\frac{\sqrt{3}}{\sqrt{2}}=\frac{\sin \frac{\pi}{3}}{\sin C} \quad\left(\because \frac{b}{c}=\frac{\sqrt{3}}{\sqrt{2}}\right.$ given $)$
i. e $\sin C=\frac{\sqrt{3}}{2} \times \frac{\sqrt{2}}{\sqrt{3}}$
i. e $\sin C=\frac{1}{\sqrt{2}}$
i. e $\sin C=\frac{\pi}{4}$