If α and β are two solutions of the equation a tan x + b sec x = c, then find the values of sin (α + β) and cos (α + β).
$a \tan x+b \sec x=c$
$\Rightarrow(c-a \tan x)=b \sec x$
$\Rightarrow(c-a \tan x)^{2}=(b \sec x)^{2}$
$\Rightarrow c^{2}+a^{2} \tan ^{2} x-2 a c \tan x=b^{2} \sec ^{2} x$
$\Rightarrow c^{2}+a^{2} \tan ^{2} x-2 a c \tan x=b^{2}\left(1+\tan ^{2} x\right)$
$\Rightarrow\left(a^{2}-b^{2}\right) \tan ^{2} x-2 a c \tan x+\left(c^{2}-b^{2}\right)=0$
This is a quadratic in $\tan x$.
It has two solutions $\tan \alpha$ and $\tan \beta$.
$\tan \alpha+\tan \beta=\frac{2 a c}{a^{2}-b^{2}}$
$\tan \alpha \times \tan \beta=\frac{c^{2}-b^{2}}{a^{2}-b^{2}}$
Therefore, $\tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta}$
$=\frac{\frac{2 a c}{a^{2}-b^{2}}}{1-\frac{c^{2}-b^{2}}{a^{2}-b^{2}}}$
$=\frac{2 a c}{a^{2}-c^{2}}$
Hence, $\sin (\alpha+\beta)=\frac{2 a c}{a^{2}+c^{2}}$ and $\cos (\alpha+\beta)=\frac{a^{2}-c^{2}}{a^{2}+c^{2}}$.