If $\alpha$ and $\beta$ are the zeros of the quadratic polynomial $p(y)=5 y^{2}-7 y+1$, find the value of $\frac{1}{\alpha}+\frac{1}{\beta}$.
Since $\alpha$ and $\beta$ are the zeros of the quadratic polynomial $p(y)=5 y^{2}-7 y+1$
$\alpha+\beta=\frac{-\text { Coefficient of } x}{\text { Coefficient of } x^{2}}$
$=-\frac{(-7)}{5}$
$=\frac{7}{5}$
$\alpha \beta=\frac{\text { Constant term }}{\text { Coefficient of } x^{2}}$
$=\frac{1}{5}$
We have, $\frac{1}{\alpha}+\frac{1}{\beta}=\frac{\alpha+\beta}{\alpha \beta}$
By substituting $\alpha+\beta=\frac{7}{5}$ and $\alpha \beta=\frac{1}{5}$ we get,
$\frac{1}{\alpha}+\frac{1}{\beta}=\frac{\frac{7}{5}}{\frac{1}{5}}$
$\frac{1}{\alpha}+\frac{1}{\beta}=7$
Hence, the value of $\frac{1}{\alpha}+\frac{1}{\beta}$ is 7 .