If $\alpha$ and $\beta$ are the zeros of the quadratic polynomial $t(x)=x^{2}-x-4$, find the value of $\frac{1}{\alpha}+\frac{1}{\beta}-\alpha \beta$.
Since $\alpha$ and $\beta$ are the zeros of the quadratic polynomials $f(x)=x^{2}-x-4$
sum of the zeros $=\frac{-\text { Coefficient of } x}{\text { Coefficient of } x^{2}}$
$\alpha+\beta=-\left[-\frac{1}{1}\right]$
$\alpha+\beta=\frac{1}{1}$
$\alpha+\beta=1$
Product if zeros $=\frac{\text { Constant term }}{\text { Coefficient of } x^{2}}$
$\alpha \beta=\frac{-4}{1}$
$\alpha \beta=-4$
We have,
$\frac{1}{\alpha}+\frac{1}{\beta}-\alpha \beta$
$\frac{\alpha+\beta}{\alpha \beta}-\alpha \beta$
By substituting $\alpha+\beta=1$ and $\alpha \beta=-4$ we get,
$\frac{1}{\alpha}+\frac{1}{\beta}-\alpha \beta=\frac{1}{-4}-(-4)$
$\frac{1}{\alpha}+\frac{1}{\beta}-\alpha \beta=\frac{1}{-4}+\frac{4}{1}$
$\frac{1}{\alpha}+\frac{1}{\beta}-\alpha \beta=\frac{1}{-4}+\frac{4 \times 4}{1 \times 4}$
$\frac{1}{\alpha}+\frac{1}{\beta}-\alpha \beta=\frac{1}{-4}+\frac{16}{4}$
$\frac{1}{\alpha}+\frac{1}{\beta}-\alpha \beta=\frac{-1+16}{4}$
$\frac{1}{\alpha}+\frac{1}{\beta}-\alpha \beta=\frac{15}{4}$
Hence, the value of $\frac{1}{\alpha}+\frac{1}{\beta}-\alpha \beta$ is $\frac{15}{4}$.