If $\alpha$ and $\beta$ are the zeros of the quadratic polynomial $1(x)=x^{2}-p(x+1)-c$, show that $(\alpha+1)(\beta+1)=1-c$.
Since $\alpha$ and $\beta$ are the zeros of the quadratic polynomial $f(x)=x^{2}-p(x+1)-c$
Then
$x^{2}-p(x+1)-c$
$x^{2}-p x-p-c$
$\alpha+\beta=\frac{-\text { Coefficient of } x}{\text { Coefficient of } x^{2}}$
$=\frac{-(-p)}{1}$
= p
$\alpha \beta=\frac{\text { Constant term }}{\text { Coefficient of } x^{2}}$
$=\frac{-p-c}{1}$
$=-p-c$
We have to prove that $(\alpha+1)(\beta+1)=1-c$
$(\alpha+1)(\beta+1)=1-c$
$(\alpha+1) \beta+(\alpha+1)(1)=1-c$
$\alpha \beta+\beta+\alpha+1=1-c$
$\alpha \beta+(\alpha+\beta)+1=1-c$'
Substituting $\alpha+\beta=p$ and $\alpha \beta=-p-c$ we get,
$-p-c+p+1=1-c$
$1-c=1-c$
Hence, it is shown that $(\alpha+1)(\beta+1)=1-c$.