If $\alpha$ and $\beta$ are the zeros of the quadratic polynomial $t(t)=t^{2}-4 t+3$, find the value of $\alpha^{4} \beta^{3}+\alpha^{3} \beta^{4} .$
Since $\alpha$ and $\beta$ are the zeros of the quadratic polynomial $p(y)=t^{2}-4 t+3$
$\alpha+\beta=\frac{-\text { Coefficient of } x}{\text { Coefficient of } x^{2}}$
$=\frac{-(-4)}{1}$
= 4
$\alpha \beta=\frac{\text { Constant term }}{\text { Coefficient of } x^{2}}$
$=\frac{3}{1}$
= 3
We have $\alpha^{4} \beta^{3}+\alpha^{3} \beta^{4}$
$\alpha^{4} \beta^{3}+\alpha^{3} \beta^{4}=\alpha^{3} \beta^{3}(\alpha+\beta)$
$\alpha^{4} \beta^{3}+\alpha^{3} \beta^{4}=(\alpha \beta)^{3}(\alpha+\beta)$
$\alpha^{4} \beta^{3}+\alpha^{3} \beta^{4}=(3)^{3}(4)$
$\alpha^{4} \beta^{3}+\alpha^{3} \beta^{4}=27 \times 4$
$\alpha^{4} \beta^{3}+\alpha^{3} \beta^{4}=108$
Hence, the value of $\alpha^{4} \beta^{3}+\alpha^{3} \beta^{4}$ is 108 .