If $\alpha$ and $\beta$ are the zeros of the quadratic polynomial $f(x)=x^{2}+x-2$, find the value of $\frac{1}{\alpha}-\frac{1}{\beta}$.
Since $\alpha$ and $\beta$ are the zeros of the quadratic polynomials $f(x)=x^{2}+x-2$
Sum of the zeros $=\frac{-\text { Coefficient of } x}{\text { Coefficient of } x^{2}}$
$\alpha+\beta=-\left[\frac{1}{1}\right]$
$\alpha+\beta=-\frac{1}{1}$
$\alpha+\beta=-1$
Product if zeros $=\frac{\text { Constant term }}{\text { Coefficient of } x^{2}}$
$\alpha \beta=\frac{-2}{1}$
$\alpha \beta=-2$
We have, $\frac{1}{\alpha}-\frac{1}{\beta}$
$\left(\frac{1}{\alpha}+\frac{1}{\beta}\right)^{2}=\left(\frac{1}{\alpha}\right)^{2}+\left(\frac{1}{\beta}\right)^{2}+\frac{2}{\alpha \beta}$
$\left(\frac{\alpha+\beta}{\alpha \beta}\right)^{2}=\left(\frac{1}{\alpha}\right)^{2}+\left(\frac{1}{\beta}\right)^{2}+\frac{2}{\alpha \beta}$
$\left(\frac{\alpha+\beta}{\alpha \beta}\right)^{2}-\frac{2}{\alpha \beta}=\left(\frac{1}{\alpha}\right)^{2}+\left(\frac{1}{\beta}\right)^{2}$
By substituting $\alpha+\beta=-1$ and $\alpha \beta=-2$ we get,
$\left(\frac{-1}{-2}\right)^{2}-\frac{2}{-2}=\left(\frac{1}{\alpha}\right)^{2}+\left(\frac{1}{\beta}\right)^{2}$
$\frac{1}{4}+1=\left(\frac{1}{\alpha}\right)^{2}+\left(\frac{1}{\beta}\right)^{2}$
$\frac{1}{4}+\frac{1 \times 4}{1 \times 4}=\left(\frac{1}{\alpha}\right)^{2}+\left(\frac{1}{\beta}\right)^{2}$
$\frac{1+4}{4}=\left(\frac{1}{\alpha}\right)^{2}+\left(\frac{1}{\beta}\right)^{2}$
$\frac{5}{4}=\left(\frac{1}{\alpha}\right)^{2}+\left(\frac{1}{\beta}\right)^{2}$
$\left(\frac{1}{\alpha}-\frac{1}{\beta}\right)^{2}=\left(\frac{1}{\alpha}\right)^{2}+\left(\frac{1}{\beta}\right)^{2}-\frac{2}{\alpha \beta}$
By substituting $\frac{5}{4}=\left(\frac{1}{\alpha}\right)^{2}+\left(\frac{1}{\beta}\right)^{2}$ in $\left(\frac{1}{\alpha}\right)^{2}+\left(\frac{1}{\beta}\right)^{2}-\frac{2}{\alpha \beta}$ we get,
$\left(\frac{1}{\alpha}-\frac{1}{\beta}\right)^{2}=\frac{5}{4}-\frac{2}{-2}$
$\left(\frac{1}{\alpha}-\frac{1}{\beta}\right)^{2}=\frac{5}{4}+1$
$\left(\frac{1}{\alpha}-\frac{1}{\beta}\right)^{2}=\frac{5}{4}+\frac{1 \times 4}{1 \times 4}$
$\left(\frac{1}{\alpha}-\frac{1}{\beta}\right)^{2}=\frac{5+4}{4}$
$\left(\frac{1}{\alpha}-\frac{1}{\beta}\right)^{2}=\frac{9}{4}$
Taking square root on both sides we get
$\sqrt{\left(\frac{1}{\alpha}-\frac{1}{\beta}\right)^{2}}=\sqrt{\frac{3 \times 3}{2 \times 2}}$
$\frac{1}{\alpha}-\frac{1}{\beta}=\pm \frac{3}{2}$
Hence, the value of $\frac{1}{\alpha}-\frac{1}{\beta}$ is $\pm \frac{3}{2}$.