If α and β are the roots of

Question:

If $\alpha$ and $\beta$ are the roots of $4 x^{2}+3 x+7=0$, then the value of $\frac{1}{\alpha}+\frac{1}{\beta}$ is(a) $\frac{4}{7}$

(b) $-\frac{3}{7}$

(c) $\frac{3}{7}$

(d) $-\frac{3}{4}$

Solution:

(b) $-\frac{3}{7}$

Given equation: $4 x^{2}+3 x+7=0$

Also, $\alpha$ and $\beta$ are the roots of the equation.

Then, sum of the roots $=\alpha+\beta=\frac{-C \text { oefficient of } x}{C \text { oefficient of } x^{2}}=-\frac{3}{4}$

Product of the roots $=\alpha \beta=\frac{C \text { onstant term }}{C \text { oefficient of } x^{2}}=\frac{7}{4}$

$\therefore \frac{1}{\alpha}+\frac{1}{\beta}=\frac{\alpha+\beta}{\alpha \beta}=\frac{-\frac{3}{4}}{\frac{7}{4}}=-\frac{3}{7}$

Leave a comment