If an error of k% is made in measuring the radius of a sphere, then percentage error in its volume is
Question:
If an error of k% is made in measuring the radius of a sphere, then percentage error in its volume is
(a) $k \%$
(b) $3 k \%$
(c) $2 k \%$
(d) $k / 3 \%$
Solution:
(b) 3k%
Let x be the radius of the sphere and y be its volume.
Then,
$\frac{\Delta x}{x} \times 100=k$
Also, $y=\frac{4}{3} \pi x^{3}$
$\Rightarrow \frac{d y}{d x}=4 \pi x^{2}$
$\Rightarrow \frac{\Delta y}{y}=\frac{4 \pi x^{2}}{y} d x=\frac{4 \pi x^{2}}{\frac{4}{3} \pi x^{3}} \times \frac{k x}{100}$
$\Rightarrow \frac{\Delta y}{y} \times 100=3 k$
Hence, the error in the volume is $3 k \%$.