Question:
If an angle of a parallelogram is four-fifths of its adjacent angle, find the angles of the parallelogram.
Solution:
Let ABCD be a parallelogram.
$\therefore \angle A=\angle C$ and $\angle B=\angle D \quad$ (Opposite angles)
Let $\angle A=x^{\circ}$ and $\angle B=\left(\frac{4 x}{5}\right)^{\circ}$
Now, $\angle A+\angle B=180^{\circ}$ (Adjacent angles are supplementary)
$\Rightarrow x+\frac{4 x}{5}=180^{\circ}$
$\Rightarrow \frac{9 x}{5}=180^{\circ}$
$\Rightarrow x=100^{\circ}$
Now, $\angle A=100^{\circ}$ and $\angle B=\left(\frac{4}{5}\right) \times 100^{\circ}=80^{\circ}$
Hence, $\angle A=\angle C=100^{\circ} ; \angle B=\angle D=80^{\circ}$