If ΔABC is right angled at C,

Question:

If ΔABC is right angled at C, then the value of cos (A + B) is

(a) 0

(b) 1

(c) $\frac{1}{2}$

(d) $\frac{\sqrt{3}}{2}$

 

Solution:

(a) We know that, in $\triangle A B C$, sum of three angles $=180^{\circ}$

i.e., $\quad \angle A+\angle B+\angle C=180^{\circ}$

But right angled at $C$ i.e., $\angle C=90^{\circ}$ [given]

But right angled at $C$ i.e., $\angle C=90^{\circ}$

$\angle A+\angle B+90^{\circ}=180^{\circ}$

 $\Rightarrow$ $A+B=90^{\circ}$ $[\because \angle A=A]$

$\therefore$ $\cos (A+B)=\cos 90^{\circ}=0$

Leave a comment