If $\triangle A B C$ is a right triangle such that $\angle C=90^{\circ}, \angle A=45^{\circ}$ and $B C=7$ units. Find $\angle B, A B$ and $A C$.
We are given the following information in the form of the triangle
It is required to find $\angle B$ and length of sides $A B$ and $A C$
In $\triangle A B C \angle C=90^{\circ}$
Now we know that sum of all the angles of any triangle is $180^{\circ}$
Therefore,
$\angle A+\angle B+\angle C=180^{\circ}$.....(1)
Now by substituting the values of known angles $\angle A$ and $\angle C$ in equation (1)
We get,
$45^{\circ}+\angle B+90^{\circ}=180^{\circ}$
Therefore,
$\angle B+135^{\circ}=180^{\circ}$
$\Rightarrow \quad \angle B=180^{\circ}-135^{\circ}$
$\Rightarrow \quad \angle B=45^{\circ}$
Therefore,
$\angle B=45^{\circ} \ldots \ldots(2)$
Now,
We know that,
$\cos B=\cos 45^{\circ}$
$\Rightarrow \frac{B C}{A B}=\cos 45^{\circ}$.....(3)
Now we have,
$B C=7$ units and $\cos 45^{\circ}=\frac{1}{\sqrt{2}}$
Therefore by substituting above values in equation (3)
We get,
$\cos B=\cos 45^{\circ}$
$\Rightarrow \frac{7}{A B}=\cos 45^{\circ}$
$\Rightarrow \frac{7}{A B}=\frac{1}{\sqrt{2}}$
Now by cross multiplying we get,
$7 \sqrt{2}=A B$
$\Rightarrow A B=7 \sqrt{2}$
Therefore,
$A B=7 \sqrt{2}$ units.....(4)
Now,
We know that,
$\sin B=\sin 45^{\circ}$
$\Rightarrow \frac{A C}{A B}=\sin 45^{\circ}$....(5)
Now we have,
$A B=7 \sqrt{2}$ units and $\sin 45^{\circ}=\frac{1}{\sqrt{2}}$
Therefore by substituting above values in equation (5)
We get,
$\frac{A C}{7 \sqrt{2}}=\sin 45^{\circ}$
$\Rightarrow \frac{A C}{7 \sqrt{2}}=\frac{1}{\sqrt{2}}$
Now by cross multiplying we get,
$A C=\frac{7 \sqrt{2}}{\sqrt{2}}$
$\Rightarrow A C=7$
Therefore,
$A C=7$ units....(6)
Therefore,
From equation (2), (4) and (6)
$\angle B=45^{\circ}, A B=7 \sqrt{2}$ units,$A C=7$ units