If ∆ABC ∼ ∆EDF and ∆ABC is not similar to ∆DEF,

Question:

If ∆ABC ∼ ∆EDF and ∆ABC is not similar to ∆DEF, then which of the following is not true?
(a) BC ⋅ EF = AC ⋅ FD
(b) AB ⋅ EF = AC ⋅ DE
(c) BC ⋅ DE = AB ⋅ EF
(d) BC ⋅ DE = AB ⋅ FD

 

Solution:

(c) BC ⋅ DE = AB ⋅ EF

ABC ∼ ∆EDF
Therefore,

$\frac{A B}{D E}=\frac{A C}{E F}=\frac{B C}{D F}$

$\Rightarrow B C \cdot D E \neq A B \cdot E F$

 

 

Leave a comment