If ΔABC ~ ΔEDF and ΔABC is not similar to ΔDEF, then which of the following is not true?
(a) BC · EF = AC · FD
(b) AB · EF = AC · DE
(c) BC · DE = AB · EF
(d) BC · DE = AB · FD
(c) Given, $\triangle A B C \sim \triangle E D F$
$\therefore$ $\frac{A B}{E D}=\frac{B C}{D F}=\frac{A C}{E F}$
Taking first two terms, we get
$\frac{A B}{E D}=\frac{B C}{D F}$
$\Rightarrow$ $A B \cdot D F=E D \cdot B C$
Or $B C \cdot D E=A B \cdot D F$
So, option (d) is true.
Taking last two terms, we get
$\frac{B C}{D F}=\frac{A C}{E F}$
$\Rightarrow \quad B C \cdot E F=A C \cdot D F$
So, option (a) is also true.
Taking first and last terms, we get
$\frac{A B}{E D}=\frac{A C}{E F}$
$\Rightarrow \quad A B \cdot E F=E D \cdot A C$
Hence, option (b) is true.