If ∆ABC ∼ ∆DEF such that DE = 3 cm, EF = 2 cm, DF = 2.5 cm, BC = 4 cm, then perimeter of ∆ABC is
(a) 18 cm
(b) 20 cm
(c) 12 cm
(d) 15 cm
Given: ΔABC and ΔDEF are similar triangles such that DE = 3cm, EF = 2cm, DF = 2.5cm and BC = 4cm.
To find: Perimeter of ΔABC.
We know that if two triangles are similar then their corresponding sides are proportional.
Hence, $\frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{BC}}{\mathrm{EF}}=\frac{\mathrm{CA}}{\mathrm{FD}}$
Substituting the values we get
$\frac{\mathrm{AB}}{\mathrm{BC}}=\frac{\mathrm{DE}}{\mathrm{EF}}$
$\frac{\mathrm{AB}}{4}=\frac{3}{2}$
$\mathrm{AB}=6 \mathrm{~cm}$.....$(1)$
Similarly,
$\frac{\mathrm{CA}}{\mathrm{BC}}=\frac{\mathrm{DF}}{\mathrm{EF}}$
$\frac{\mathrm{CA}}{4}=\frac{2.5}{2}$
$\mathrm{CA}=5 \mathrm{~cm}$.....(2)
Perimeter of $\triangle \mathrm{ABC}=\mathrm{AB}+\mathrm{BC}+\mathrm{CA}$
$=6+4+5$
$=15 \mathrm{~cm}$
Hence the correct option is $(d)$