If ∆ABC and ∆DEF are two triangles such that ABDE=BCEF=CAFD=25, then Area (∆ABC) : Area (∆DEF) =
(a) 2 : 5
(b) 4 : 25
(c) 4 : 15
(d) 8 : 125
Given: $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$ are two triangles such that $\frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{BC}}{\mathrm{EF}}=\frac{\mathrm{CA}}{\mathrm{FD}}=\frac{2}{5}$.
To find: $\operatorname{Ar}(\triangle \mathrm{ABC}): \operatorname{Ar}(\triangle \mathrm{DEF})$
We know that if the sides of two triangles are proportional, then the two triangles are similar.
Since $\frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{BC}}{\mathrm{EF}}=\frac{\mathrm{CA}}{\mathrm{FD}}=\frac{2}{5}$, therefore, $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$ are similar.
We know that the ratio of areas of two similar triangles is equal to the ratio of squares of their corresponding sides.
$\frac{\operatorname{Ar}(\Delta \mathrm{ABC})}{\operatorname{Ar}(\Delta \mathrm{DEF})}=\frac{\mathrm{AB}^{2}}{\mathrm{DE}^{2}}$
$\frac{\operatorname{Ar}(\triangle \mathrm{ABC})}{\operatorname{Ar}(\triangle \mathrm{DEF})}=\frac{2^{2}}{5^{2}}$
$\frac{\operatorname{Ar}(\Delta \mathrm{ABC})}{\operatorname{Ar}(\Delta \mathrm{DEF})}=\frac{4}{25}$
Hence the correct answer is $(b)$.