If ∆ABC and ∆DEF are similar triangles such that AB = 3 cm, BC = 2 cm, CA = 2.5 cm and EF = 4 cm, write the perimeter of ∆DEF.
GIVEN: ΔABC and ΔDEF are similar triangles such that AB = 3cm, BC = 2cm, CA = 2.5cm and EF = 4cm.
TO FIND: Perimeter of ΔDEF.
We know that if two triangles are similar then their corresponding sides are proportional.
Hence, $\frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{BC}}{\mathrm{EF}}=\frac{\mathrm{CA}}{\mathrm{FD}}$
Substituting the values, we get
$\frac{\mathrm{AB}}{\mathrm{BC}}=\frac{\mathrm{DE}}{\mathrm{EF}}$
$\frac{3}{2}=\frac{D E}{4}$
$\mathrm{DE}=6 \mathrm{~cm}$....$\ldots(1)$
Similarly,
$\frac{\mathrm{CA}}{\mathrm{BC}}=\frac{\mathrm{DF}}{\mathrm{EF}}$
$\frac{2.5}{2}=\frac{\mathrm{DF}}{4}$
$\mathrm{DF}=5 \mathrm{~cm}$....(2)
Perimeter of $\triangle \mathrm{DEF}=\mathrm{DE}+\mathrm{EF}+\mathrm{DF}$
$=6+4+5$
$=15 \mathrm{~cm}$