If $\mathrm{ABC}$ and $\mathrm{DEF}$ are similar triangles such that $\angle \mathrm{A}=57^{\circ}$ and $\angle \mathrm{E}=73^{\circ}$, what is the measure of $\angle \mathrm{C}$ ?
GIVEN: There are two similar triangles ΔABC and ΔDEF.
$\angle \mathrm{A}=57^{\circ} \cdot \angle \mathrm{E}=73^{\circ}$
TO FIND: measure of $\angle \mathrm{C}$
SAS Similarity Criterion: If in two triangles, one pair of corresponding sides are proportional and the included angles are equal then two triangles are similar.
In ΔABC and ΔDEF if
$\frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{AC}}{\mathrm{DF}}$ and
$\angle \mathrm{A}=\angle \mathrm{D}$
Then, $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$
So,
$\angle \mathrm{A}=\angle \mathrm{D}$
$\angle \mathrm{D}=57^{\circ}$.....(1)
Similarly
$\angle \mathrm{B}=\angle \mathrm{E}$
$\angle \mathrm{B}=73^{\circ}$.....(2)
Now we know that sum of all angles of a triangle is equal to 180°,
$\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$
$57^{\circ}+73^{\circ}+\angle \mathrm{C}=180^{\circ}$
$130^{\circ}+\angle \mathrm{C}=180^{\circ}$
$\angle \mathrm{C}=50^{\circ}$