If AB is a chord of length

Question:

If $A B$ is a chord of length $5 \sqrt{3} \mathrm{~cm}$ of a circle with centre $O$ and radius $5 \mathrm{~cm}$, then area of sector $O A B$ is

(a) $\frac{3 \pi}{8} \mathrm{~cm}^{2}$

(b) $\frac{8 \pi}{3} \mathrm{~cm}^{2}$

(c) $25 \pi \mathrm{cm}^{2}$

(d) $\frac{25 \pi}{3} \mathrm{~cm}^{2}$

Solution:

We have to find the area of the sector OAB.

We have,

$\mathrm{AM}=\frac{5 \sqrt{3}}{2}$

So,

$\sin \angle \mathrm{AOM}=\frac{5 \sqrt{3}}{2(5)}$

Hence,

$\angle \mathrm{AOM}=60^{\circ}$

Therefore area of the sector,

$=\frac{1}{2} r^{2} \theta$

$=\frac{1}{2}(25)\left(\frac{2 \pi}{3}\right)$

$=\frac{25 \pi}{3} \mathrm{~cm}^{2}$

So answer is (d)

Leave a comment