Question:
If a variable line, $3 x+4 y-\lambda=0$ is such that the two circles $x^{2}+y^{2}-2 x-2 y+1=0$ and $x^{2}+y^{2}-18 x-2 y+78=0$ are on its opposite sides, then the set of all values of $\lambda$ is the interval :-
Correct Option: 1
Solution:
Centre of circles are opposite side of line
$(3+4-\lambda)(27+4-\lambda)<0$
$(\lambda-7)(\lambda-31)<0$
$\lambda \in(7,31)$
distance from $S_{1}$
$\left|\frac{3+4-\lambda}{5}\right| \geq 1 \Rightarrow \lambda \in(-\infty, 2] \cup[(12, \infty]$
distance from $\mathrm{S}_{2}$
$\left|\frac{27+4-\lambda}{5}\right| \geq 2 \Rightarrow \lambda \in(-\infty, 21] \cup[41, \infty)$
so $\lambda \in[12,21]$