Question: If a tangent to the circle $x^{2}+y^{2}=1$ intersects the coordinate axes at distinct points $\mathrm{P}$ and $\mathrm{Q}$, then the locus of the mid-point of $P Q$ is
$x^{2}+y^{2}-2 x y=0$
$x^{2}+y^{2}-16 x^{2} y^{2}=0$
$x^{2}+y^{2}-4 x^{2} y^{2}=0$
$x^{2}+y^{2}-2 x^{2} y^{2}=0$
Correct Option: , 3