If a tangent to the circle $x^{2}+y^{2}=$ lintersects the coordinate axes at distinct points $P$ and $Q$, then the locus of the midpoint of $\mathrm{PQ}$ is:
Correct Option: 1,
Let any tangent to circle $x^{2}+y^{2}=1$ is $x \cos \theta+y \sin \theta=1$
Since, $P$ and $Q$ are the point of intersection on the coordinate axes.
Then $P \equiv\left(\frac{1}{\cos \theta}, 0\right) \& Q \equiv\left(0, \frac{1}{\sin \theta}\right)$
$\therefore$ mid-point of PQ be $M \equiv\left(\frac{1}{2 \cos \theta}, \frac{1}{2 \sin \theta}\right) \equiv(h, k)$
$\Rightarrow \cos \theta=\frac{1}{2 h}$..........(1)
$\sin \theta=\frac{1}{2 k}$ .............(2)
Now squaring and adding equation (1) and (2)
$\frac{1}{h^{2}}+\frac{1}{k^{2}}=4$
$\Rightarrow \mathrm{h}^{2}+\mathrm{k}^{2}=4 \mathrm{~h}^{2} \mathrm{k}^{2}$
$\therefore$ locus of $M$ is $: x^{2}+y^{2}=4 x^{2} y^{2}$