If a line,

Question:

If a line, $\mathrm{y}=\mathrm{mx}+\mathrm{c}$ is a tangent to the circle, $(x-3)^{2}+y^{2}=1$ and it is perpendicular to a line $L_{1}$, where $L_{1}$ is the tangent to the circle, $x^{2}+y^{2}=1$ at the point $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$, then

  1. $c^{2}-6 c+7=0$

  2. $\mathrm{c}^{2}+6 \mathrm{c}+7=0$

  3. $\mathrm{c}^{2}+7 \mathrm{c}+6=0$

  4. $\mathrm{c}^{2}-7 \mathrm{c}+6=0$


Correct Option: , 2

Solution:

Leave a comment