$3 \tan A+4=0$
$\Rightarrow \tan A=-\frac{4}{3}$
$\Rightarrow \cot A=-\frac{3}{4}$
Now,
$\sec A=\pm \sqrt{1+\tan ^{2} A}=\pm \sqrt{1+\frac{16}{9}}=\pm \sqrt{\frac{25}{9}}=\pm \frac{5}{3}$
$\therefore \sec A=-\frac{5}{3} \quad$ (A lies in 2 nd quadrant)
$\Rightarrow \cos A=-\frac{3}{5}$
Also,
$\sin A=\pm \sqrt{1-\cos ^{2} A}=\pm \sqrt{1-\frac{9}{25}}=\pm \sqrt{\frac{16}{25}}=\pm \frac{4}{5}$
$\therefore \sin A=\frac{4}{5}$
So,
$2 \cot A-5 \cos A+\sin A$
$=2 \times\left(-\frac{3}{4}\right)-5 \times\left(-\frac{3}{5}\right)+\frac{4}{5}$
$=-\frac{3}{2}+3+\frac{4}{5}$
$=\frac{-15+30+8}{10}$
$=\frac{23}{10}$
Hence, the correct answer is option B.