If A is the arithmetic mean and G1, G2 be two geometric means between any two numbers, then prove that
$2 \mathrm{~A}=\frac{\mathrm{G}_{1}^{2}}{\mathrm{G}_{2}}+\frac{\mathrm{G}_{2}^{2}}{\mathrm{G}_{1}}$
Given $\mathrm{A}$ is the arithmetic mean and $\mathrm{G}_{1}, \mathrm{G}_{2}$ be two geometric means between any two numbers
Let the two numbers be ' $\mathrm{a}$ ' and ' $\mathrm{b}$ '
The arithmetic mean is given by $A=\frac{a+b}{2}$ and the geometric mean is given by $\mathrm{G}=\sqrt{\mathrm{ab}}$
We have to insert two geometric means between $\mathrm{a}$ and $\mathrm{b}$
Now that we have the terms $a, G_{1}, G_{2}, b$
$\mathrm{G}_{1}$ will be the geometric mean of a and $\mathrm{G}_{2}$ and $\mathrm{G}_{2}$ will be the geometric mean of $\mathrm{G}_{1}$ and $\mathrm{b}$
Hence $\mathrm{G}_{1}=\sqrt{\mathrm{aG}_{2}}$ and $\mathrm{G}_{2}=\sqrt{\mathrm{G}_{1} \mathrm{~b}}$
Square $\mathrm{G}_{1}=\sqrt{\mathrm{aG}_{2}}$
$\Rightarrow \mathrm{G}_{1}^{2}=\mathrm{aG}_{2}$
Put $\mathrm{G}_{2}=\sqrt{\mathrm{G}_{1} \mathrm{~b}}$
$\Rightarrow \mathrm{G}_{1}^{2}=\mathrm{a} \sqrt{\mathrm{G}_{1} \mathrm{~b}}$
Squaring on both sides we get
$\Rightarrow \mathrm{G}_{1}^{4}=\mathrm{a}^{2}\left(\mathrm{G}_{1} \mathrm{~b}\right)$
$\Rightarrow \mathrm{G}_{1}^{3}=\mathrm{a}^{2} \mathrm{~b}$
$\Rightarrow \mathrm{G}_{1}=\mathrm{a}^{\frac{2}{3}} \mathrm{~b}^{\frac{1}{3}}$
Put value of $\mathrm{G}_{1}$ in $\mathrm{G}_{2}=\sqrt{\mathrm{G}_{1} \mathrm{~b}}$
$\Rightarrow \mathrm{G}_{2}=\sqrt{\mathrm{a}^{\frac{2}{3}} \mathrm{~b}^{\frac{1}{3}} \mathrm{~b}}$
$=\left(a^{\frac{2}{3}} b^{\frac{1}{3}+1}\right)^{\frac{1}{2}}$
On simplification we get
$=\left(a^{\frac{2}{3}} b^{\frac{4}{3}}\right)^{\frac{1}{2}}$
$=a^{\frac{1}{3}} b^{\frac{2}{3}}$
Now we have to prove that $2 \mathrm{~A}=\frac{\mathrm{G}_{1}^{2}}{\mathrm{G}_{2}}+\frac{\mathrm{G}_{2}^{2}}{\mathrm{G}_{1}}$
Consider RHS
$\Rightarrow \mathrm{RHS}=\frac{\mathrm{G}_{1}^{2}}{\mathrm{G}_{2}}+\frac{\mathrm{G}_{2}^{2}}{\mathrm{G}_{1}}$
Substitute values of $G_{1}$ and $G_{2}$ from 1 and 2
$\Rightarrow \mathrm{RHS}=\frac{\left(\mathrm{a}^{\frac{2}{3}} \mathrm{~b}^{\frac{1}{3}}\right)^{2}}{\mathrm{a}^{\frac{1}{3}} \mathrm{~b}^{\frac{2}{3}}}+\frac{\left(\mathrm{a}^{\frac{1}{3}} \mathrm{~b}^{\frac{2}{3}}\right)^{2}}{\mathrm{a}^{\frac{2}{3}} \mathrm{~b}^{\frac{1}{3}}}$
$=\frac{a^{\frac{4}{3}} b^{\frac{2}{3}}}{a^{\frac{1}{3}} b^{\frac{2}{3}}}+\frac{a^{\frac{2}{3}} b^{\frac{4}{3}}}{a^{\frac{2}{3}} b^{\frac{1}{3}}}$
Taking LCM and simplifying we get
$=a^{\frac{4}{3}-\frac{1}{3}} b^{\frac{2}{3}}-\frac{2}{3}+a^{\frac{2}{3}}-\frac{2}{3} b^{\frac{4}{3}}-\frac{1}{3}$
$\Rightarrow$ RHS $=a+b$
Divide and multiply by 2
$\Rightarrow \mathrm{RHS}=2 \frac{\mathrm{a}+\mathrm{b}}{2}$
But $A=\frac{a+b}{2}$
Therefore
⇒ RHS = 2A
Hence RHS = LHS
Hence proved