If A is square matrix such that then is equal to

Question:

If $A$ is square matrix such that $A^{2}=A$, then $(I+A)^{3}-7 A$ is equal to

A. A 

B. I − A

C. I 

D. 3A

Solution:

Answer: C

$(I+A)^{3}-7 A=I^{3}+A^{3}+3 I^{2} A+3 A^{2} I-7 A$

$=I+A^{3}+3 A+3 A^{2}-7 A$

$=I+A^{2} \cdot A+3 A+3 A-7 A \quad\left[A^{2}=A\right]$       

$=I+A \cdot A-A$

$=I+A^{2}-A$

$=I+A-A$

$=I$

$\therefore(I+A)^{3}-7 A=I$

 

 

 

Leave a comment