If A is an invertible matrix, then which of the following is not true

Question:

If A is an invertible matrix, then which of the following is not true

(a) $\left(A^{2}\right)^{-1}=\left(A^{-1}\right)^{2}$

(b) $\left|A^{-1}\right|=|A|^{-1}$

(c) $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$

(d) $|A| \neq 0$

Solution:

(a) $\left(A^{2}\right)^{-1}=\left(A^{-1}\right)^{2}$

We have, $\left|A^{-1}\right|=|A|^{-1},\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$ and $|A| \neq 0$ all are the properties of the inverse of a matrix $A$

Leave a comment