Question:
If $A$ is an invertible matrix of order 3 and $|A|=5$, then $\operatorname{adj}(\operatorname{adj} A)=$___________
Solution:
Given:
$A$ is an invertible matrix of order 3
$|A|=5$
As we know,
$\operatorname{adj}(\operatorname{adj} A)=|A|^{n-2} A$, where $n$ is the order of $A$
$\Rightarrow \operatorname{adj}(\operatorname{adj} A)=|A|^{3-2} A \quad(\because$ Order of $A$ is 3$)$
$\Rightarrow \operatorname{adj}(\operatorname{adj} A)=|A|^{1} A$
$\Rightarrow \operatorname{adj}(\operatorname{adj} A)=5 A \quad(\because|A|=5)$
$\Rightarrow \operatorname{adj}(\operatorname{adj} A)=5 A$
Hence, $\operatorname{adj}(\operatorname{adj} A)=\underline{5 A} .$