Question:
If $A$ is an invertible matrix of order 3 and $|A|=4$, then $|\operatorname{adj}(\operatorname{adj} A)|=$____________
Solution:
Given:
$A$ is an invertible matrix of order 3
$|A|=4$
As we know,
$|\operatorname{adj}(\operatorname{adj} A)|=|A|^{(n-1)^{2}}$, where $n$ is the order of $A$
$\Rightarrow|\operatorname{adj}(\operatorname{adj} A)|=|A|^{(3-1)^{2}} \quad(\because$ Order of $A$ is 3$)$
$\Rightarrow|\operatorname{adj}(\operatorname{adj} A)|=|A|^{(2)^{2}}$
$\Rightarrow|\operatorname{adj}(\operatorname{adj} A)|=|A|^{4}$
$\Rightarrow|\operatorname{adj}(\operatorname{adj} A)|=4^{4} \quad(\because|A|=4)$
$\Rightarrow|\operatorname{adj}(\operatorname{adj} A)|=256$
Hence, $|\operatorname{adj}(\operatorname{adj} A)|=\underline{256}$.