If A is a square matrix, then AA is a

Question:

If $A$ is a square matrix, then $A A$ is a

(a) skew-symmetric matrix

(b) symmetric matrix

(c) diagonal matrix

(d) none of these

Solution:

(d) none of these

Given: A is a square matrix.

Let $A=\left[\begin{array}{ll}1 & 2 \\ 1 & 0\end{array}\right]$

$\Rightarrow A A=\left[\begin{array}{ll}1 & 2 \\ 1 & 0\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 1 & 0\end{array}\right]=\left[\begin{array}{ll}3 & 2 \\ 1 & 2\end{array}\right]$

Leave a comment