If $A$ is a square matrix satisfying $A^{\top} A=l$, write the value of $|A|$.
Let $A=\left[a_{i j}\right]$ be a square matrix of order $\mathrm{n}$.
Here,
$|A|=\left|A^{T}\right|$
[By property of determinants]
Given: $\mathrm{A}^{\mathrm{T}} \mathrm{A}=\mathrm{I}$
$\Rightarrow\left|\mathrm{A}^{\mathrm{T}} \mathrm{A}\right|=1$
Then,
$\left|\mathrm{A}^{\mathrm{T}} \mathrm{A}\right|=\left|\mathrm{A}^{\mathrm{T}}\right||\mathrm{A}| \quad$ [Since the determinants are of the same order]
$\Rightarrow\left|\mathrm{A}^{\mathrm{T}}\right||\mathrm{A}|=1$
$\Rightarrow|\mathrm{A}|=\frac{1}{\left|\mathrm{~A}^{\mathrm{T}}\right|}$
$\Rightarrow|\mathrm{A}|=\frac{1}{|\mathrm{~A}|}$ $\left[\therefore|A|=\left|A^{T}\right|\right]$
$\Rightarrow|\mathrm{A}|^{2}=1$
$\Rightarrow|A|=+1$