Question:
If $A$ is a skew-symmetric matrix of order $3 \times 3$, then $|A|=$
Solution:
Given: A is a skew-symmetric matrix of order 3 × 3
$A=-A^{T}$
Taking determinant on both sides, we get
$\Rightarrow|A|=\left|-A^{T}\right|$
$\Rightarrow|A|=(-1)^{3}\left|A^{T}\right| \quad(\because$ Order of $A$ is $3 \times 3)$
$\Rightarrow|A|=(-1)^{3}|A| \quad\left(\because\left|A^{T}\right|=|A|\right)$
$\Rightarrow|A|=-|A|$
$\Rightarrow|A|+|A|=0$
$\Rightarrow 2|A|=0$
$\Rightarrow|A|=0$
Hence, $|A|=\underline{0}$.