If A is a non-singular symmetric matrix,

Question:

If $A$ is a non-singular symmetric matrix, write whether $A^{-1}$ is symmetric or skew-symmetric.

Solution:

Let $A$ be an invertible symmetric matrix. Then,

$|A| \neq 0$ and $A^{T}=A$

Now, $\left(A^{-1}\right)^{T}=\left(A^{T}\right)^{-1}$

$\Rightarrow\left(A^{-1}\right)^{T}=A^{-1} \quad\left[\because A^{T}=A\right]$

Thus, $A^{-1}$ is symmetric matrix.

Leave a comment