Question:
If $A$ is a non-singular matrix of order 3, then $\operatorname{adj}(\operatorname{adj} A)$ is equal to__________
Solution:
Given:
$A$ is a non-singular matrix of order 3
As we know,
$\operatorname{adj}(\operatorname{adj} A)=|A|^{n-2} A$, where $n$ is the order of $A$
$\Rightarrow \operatorname{adj}(\operatorname{adj} A)=|A|^{3-2} A \quad(\because$ Order of $A$ is 3$)$
$\Rightarrow \operatorname{adj}(\operatorname{adj} A)=|A|^{1} A$
$\Rightarrow \operatorname{adj}(\operatorname{adj} A)=|A| A$
Hence, $\operatorname{adj}(\operatorname{adj} A)$ is equal to $\mid \underline{A \mid} \underline{A}$.